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Abstract

This research project addresses the challenge of analyzing the form of a human run

without the use of sensors attached to the athlete’s body by proposing a new analysis method.

The method involves using computer vision to collect data about an athlete’s run and analyzing it

using a machine learning model that is based on a professional runner. The goal of the machine

learning model is to correct the form of an athlete in an inputted video by making predictions

about their motion. Through analyzing the motion of an Olympic runner with the Spearman

Rank correlation test, the research concludes that modeling the run with machine learning is

feasible. The creation of said machine learning algorithm is judged successful with limited

accuracy. The potential application of the model in the real world is judged based on Paul

Fleming’s findings in “Athlete and coach perceptions of technology needs for evaluating running

performance” (2018).
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Literature Review

The challenge of maximizing training efficiency has been tackled by running coaches for

as long as running has formally existed. As technology continues to advance, it is drastically

reshaping the field of training, with a multitude of new devices and tools being used to take on

the challenge. Wearable technologies and virtual reality are among the most popular developing

technologies for self training and improvement. For runners, a lack of the right tool could be the

only hindrance holding improvement back. If the right technologies are provided to greater

numbers of people, however, aspiring runners of all skill levels and affluence could have the

opportunity to improve their performance. These technologies are already commonly used by

athletes in a variety of other sports and are expanding to new athletic endeavors like running

rapidly. The goal of this project is to propose a machine learning-based training tool with the

ability to give feedback to a runner regarding their form, more specifically the exact positioning

of their body during a run, and to evaluate its effectiveness at providing data that is useful in the

coaching process.

In recent years, the dominating technologies have been wearables, defined as “digital

products that can take the form of accessories or clothing” (Wei et al., 2021). Borowski-Beszta

and Polasik discuss the practical use cases of wearable devices in “Wearable Devices: New

Quality in Sports and Finance”, in which they claim, “The practical applications of wearables are

dominant. The devices are popular primarily among users who practice sports and want to

monitor their progress, body parameters or their life balance” (Borowski-Beszta & Polasik,

2020). Smartwatches see the most use out of any devices in the wearable technology category.

They have asserted their dominance in the field due to their convenience and ease of use. One
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can easily slip on a smartwatch without second thought and wear it throughout the day, allowing

it to track vital information about an athlete, including their heart rate, steps, and even blood

oxygen level. Although practical, smartwatches don’t have the ability to detect the exact position

of the athlete wearing them, limiting their ability to assess specific running form.

Wearables can also take the form of full-body systems that are worn to detect the exact

position of an athlete in 3d space. In reference to one such example of a full body system aimed

at tracking a golfer’s swing, MySwing Professional, Shiqing Wei explains that, “The precise

positioning system can capture the player’s movements accurately since the player wears

multiple micromotion sensors” (Wei et al., 2021). Lying at the other extreme, full body motion

capture systems are costly and unavailable to most athletes, leading to a need for a middle

ground.

Virtual reality (VR) is a training method that hasn’t seen nearly as much widespread

adoption as smartwatches and full body sensors. Its appeal, however, comes not just from the

accuracy and specificity of data that it is able to collect, but also its ability to analyze this data

and report it to a user in real time. Similar to full body motion tracking systems, virtual reality

has increased accuracy over the naked eye (Lv et al., 2022), although with the need for a bulkier

system. Virtual reality is a method used by researchers as a means to collect data about an athlete

as well as provide direct feedback in a headset that is worn by a user, the key difference being the

ability to issue this feedback instantly. When using virtual reality, the athlete’s body position in

space, as well as trajectory, are tracked (Lv et al., 2022). This deeper analysis of movement from

VR allows athletes to gain a fuller understanding of their strengths and weaknesses and improve

at a faster pace. The authors of, “Application of Virtual Reality Technology Based on Artificial
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Intelligence in Sports Skill Training”, conclude, “after using the artificial intelligence virtual

reality technology simulation system, the effect of athletes in sports training is better; the action

standard is longer; the mastery degree is better; the time to reach the same level is shorter, that is,

the action efficiency is higher; and the application of the system can effectively improve the level

of athletes’ sports training skills” (Lv et al., 2022). However, the use of VR is not practical

because the equipment involved in a full VR system is extensive, including sensors and a headset

that are heavy and clunky, inhibiting the movement of any athlete that may use the technology.

This means that although the data provided by VR systems is far more accurate in reporting on

an athlete’s form than a smartwatch, it does not give an accurate representation of an athlete’s

performance.

Reviewing the most common technologies used by other researchers in this field

establishes the gap of creating a running training tool that combines an input method that doesn’t

inhibit athlete movement and a novel analysis method. Discussed below, my method utilized

computer vision for input and deep learning for analysis.

In order to collect data about a subject’s position in space without the need for a

cumbersome headset or other wearable sensors that inhibit movement, the proposed method

involves utilizing computer vision as a data collection medium. By moving the data collection

medium away from the body of the runner and to an external camera, the athlete is no longer

restrained by a heavy headset or restrictive full body sensors. A large amount of data can still be

collected from this external vantage point, from which a camera can produce a two-dimensional

image. This limits the pose reconstruction to two dimensions, as three-dimensional

reconstruction is not yet accurate enough for this use case (Yiannakides et al., 2019).
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Furthermore, using computer vision as the input method, thus reducing the amount of necessary

equipment, would improve a running coach’s ability to train athletes and allow them to train

more of them due to improved affordability and accessibility. For the same reason, the tool could

also allow athletes to identify problem areas in their running on their own. The

Tensorflow-powered BlazePose model was used to collect data about the human pose. This

model, similarly to the commonly used PoseNet model has the ability to, “realize the pose

estimation of human body movements, facial expressions, finger movements and so on” (Zhou et

al., 2021). This model was chosen because it is built using Tensorflow, a machine learning

framework created by Google that has a number of features that this project made use of,

including pre built models such as BlazePose, the ability to create and train models with relative

ease due to being widely used and well-documented, and a web implementation that allows the

creation of user interfaces. Machine learning is the field in computer science that involves

allowing computers to find patterns in data. Predictions can then be made about any new, unseen

data by using machine learning models. BlazePose, for example, is a model that takes image data

as input and outputs a set of coordinate pairs, each corresponding to one key point on the

subject’s body. It is able to do this because it has “seen” many images of people with their pose

annotated by humans. By learning to understand patterns in the images, it gained the ability to

predict the pose of subjects in new images without human assistance.

The data generated with the pose estimation model was analyzed by a newly created

neural network, or NN, that was made using Tensorflow. Neural networks are machine learning

models inspired by biological brain function, allowing them to “learn” (Cser et al., 2001). Neural

networks excel at creating associations between data that humans aren’t realistically able to
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create. This would allow a neural network to find connections between a runner’s pose, time,

limb length, body shape, and other data points that are able to be collected with computer vision.

Josef Cser discusses the use of multiple neural networks in conjunction for increased versatility

(Cser et al., 2001). This method of combination was used in my method in order to utilize

separate networks for input (pose estimation) and analysis (newly created NN). Once fitted to a

dataset, a NN is able to predict an output given certain input. A dataset of poses over the course

of a professional runner’s run can be used to fit the NN, allowing it to predict a runner’s position

at a certain point in time. This correct position can be compared to a runner’s observed position

with a function such as cosine similarity in the sklearn library (Zhou et al., 2021). By applying

the NN that is trained on a professional runner to any non-professional runner, its predictions

essentially become corrections, allowing the model to show how a runner’s form should be

changed and improved.

Finally, the data should be able to be presented to the user in a digestible format. Because

Tensorflow was used to create the model, an interface can be created on the web with

Tensorflow.js (Smilkov et al., 2019), using the difference between expected and observed pose to

identify how running form should be improved and communicate it to a user. Data was collected

from an Olympic runner and a neural network was created to model their run in order to answer

the research question: To what extent can machine learning be used to model the human run for

use as a tool in athletes’ training?

Methodology

In order to explore the feasibility of adapting a machine learning (ML) approach to

running improvement, a correlation should exist between the position of a runner’s various key
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points throughout the run, allowing the run to be modeled and predicted with a neural network.

Because NNs make predictions by finding patterns, having strong correlations among the motion

of the key points provides strong patterns for the NN to find, allowing it better understand what

the proper run looks like (Krogh, 2008). The ML model then must be created to explore and

evaluate the application of the technology. When deciding on a ML framework, it was necessary

to consider a few important criteria: The framework must be well documented for ease of use, it

must have a web implementation for the creation of a user interface, and it must be freely

available. Google’s Tensorflow is a ML framework that satisfies all of these criteria.

Furthermore, Tensorflow includes BlazePose, a prebuilt deep learning (a subset of ML) model

created for human pose detection, a crucial piece for analyzing a human run. BlazePose is used

to attain the coordinates of a runner’s key joints on a two dimensional plane when viewed

perpendicular to the forward motion of the runner. The evaluation research process is appropriate

in analyzing the feasibility and effectiveness of a newly proposed product. As such, the approach

is non-experimental. Because the data would be analyzed numerically, the research used a

quantitative method.

Procedure

To analyze the correlation between joints during a “perfect” run, a video clip was chosen

based on the following criteria: The runner should be top performing, the video must be recorded

from an angle perpendicular to the trajectory of the runner, there must be ample contrast between

the color of the runner’s clothing and the color of the background, increasing the accuracy of

BlazePose estimations, and the clip must include two full strides of a run. It wasn’t necessary for

the footage to be recorded at a certain distance from the subject, as the coordinates would be
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normalized. Maintaining a consistent perspective was a crucial component for creating a more

accurate model faster. Although it is possible for a model to learn to differentiate between

different perspectives, providing feedback accordingly, it wasn’t feasible within the time

constraints of the research project. Furthermore, looking at only one perspective eliminates the

third dimension, simplifying all data onto a 2d plane. Ultimately, the clip was selected from the

5000m final at the 2016 Summer Olympics, in which Hagos Gebrhiwet is shown running under

all of the given criteria. Containing 33 frames, the clip adequately included more than the two

necessary full strides. BlazePose was then implemented for all 33 frames utilizing the

Tensorflow JS library, saving the output of each frame to a file for analysis using Spearman Rank

Correlation as well as for use as a dataset in the creation of the ML model. For a complete pose,

BlazePose generates an array of 33 keypoints and their coordinates. Each keypoint array was

appended to another array, storing all of the data for each frame in order. The coordinates of each

point were left in pixel units in this dataset, but they would be normalized in the ML model itself.

See Appendix A for the relevant Javascript implementation of these steps.

For a ML model to be created, or more specifically a deep learning model, it must be fit

to relevant data. The dataset created previously was used for this purpose. Fitting is the process

of allowing a model to progressively modify its weights, or the parameters that allow it to predict

an output, until it produces an expected result based on a given input.

Next, the deep learning model itself needed to be created. For this, I used Tensorflow and

Keras with the Python programming language. Keras allows models to be built very quickly with

the inclusion of prebuilt layers that are simple to implement. In a deep learning model, data flows

through layers of neurons, also called parameters or weights. As data flows through the network,



USING MACHINE LEARNING TO MODEL THE HUMAN RUN 10

each layer of neurons modifies the input data in some way, with each layer type having a

different effect on the data. The model created in this research involved two types of layers, a

normalization layer and the most commonly used dense layer. The normalization layer converts

the inputted data from pixel units to values between 0 and 1. Doing this does not modify the

meaning of the data. Instead, it simply formats it in a way that is easier for the NN to work with.

Dense layers are typically the layers with most of the weights that are modified during fitting.

They can be thought of as the layers that “learn”. For the purpose of this research project, five

dense layers were used with a size of 512 weights each. Finally, the model needed to be fit to the

dataset. To do so, the data was split into a training dataset and a test dataset, with 60% of the data

points being used for training and 40% being used for testing. Each dataset was split further into

a set of features and labels. The features are the coordinates of the points that the model would

predict, while the labels are the desired predictions, i.e. the coordinates that describe the pose one

frame into the future. The training dataset was used to fit the model, using the mean absolute

error loss function, a widely used and commonly agreed upon loss function. The goal of the

neural network is to make changes to its parameters that lower the loss function, creating the

feedback loop necessary for the network to “learn” by taking incremental steps in the right

direction (Song & Urtasun, 2016). The final code for the model can be found in Appendix B.

The fitted model was then able to predict the locations of all of a runner’s joints as many

frames into the future as desired based on an inputted pose. For the model to be usable and

demonstrable, it needed to be implemented into a user interface, or UI. This was created with

standard web development tools (HTML, CSS, Javascript) and Tensorflow.js. Its functionality

didn’t need to be complex, as the only requirement was to display the poses of newly predicted
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frames. The UI should simply take a video as input, process the video with a combination of

BlazePose and the newly built deep learning model, and display a summary of the least and most

accurate points in the run. Processing the video was done very similarly to preparing the dataset.

Coordinates were detected with BlazePose for each frame, after which the custom model was

used to predict the position of the runner 15 frames into the future (about 1 stride or 0.5 seconds),

predicting in 15-frame intervals until the entire video clip has been predicted. Then, the predicted

position at each frame was compared to the actual position using the cosine similarity function

from the Keras library, as used by Zhou et al. to calculate the similarity between two human

poses. This function returns a value from -1 to 1 that tells the similarity between two data points,

in this case checking the similarity between the predicted and actual positions. Since the

predictions were based on ideal running form (from a professional runner), the similarity

suggests how good the inputted form is in comparison. This value was calculated at every frame,

allowing the UI to display the parts of the video which had the lowest accuracy of running form,

which are the frames with a cosine similarity closest to 1. To do so, the user is able to scrub

through a video player that shows the accuracy of their run on that frame as a percentage (as

calculated using cosine similarity), and a skeleton overlay is displayed to show the expected pose

at that point.

Results and Discussion

The data collected reveals the x and y components of the position of thirteen key points

on the human body over the course of a stride. The key points used are as follows: Nose

(representative of head position), shoulders, elbows, wrists, hips, knees, and ankles. The results
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of collecting the Spearman Rank correlation between each combination of the positions of these

points is presented in Figure 1.

Figure 1: Spearman rank correlation between all key points.

Spearman’s rank correlation was used to find the nonlinear correlation between every

combination of variables. The resulting correlation coefficients were used to interpret the

strength of the correlation between each pair of position variables. A value of 1 represents a

perfect correlation, a value of -1 represents a perfect negative correlation, and a value of 0

represents no correlation, or the null hypothesis in this case. Highlighted in green are the values

with an absolute value greater than 0.6, representing a moderate correlation strength. Because

this research deals with the motion of an imperfect biological organism, a human, 0.6 can be

accepted as the threshold for correlation. The subsequent limitations of this fact will be

discussed, as the strength of the correlation has a direct impact on the accuracy of any attempt to
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model the run. The p-values from the Spearman rank correlation tests (shown in Figure 2) were

used to validate the statistical significance of the found correlations. The widely agreed upon

ɑ-value of 0.05 was used in this validation. Any p-value above ɑ represents a coordinate pair

without statistically significant correlation. In other words, pairs with p-values above 0.05 are not

strongly related. Therefore, all p-values below this ɑ-value represent pairs of coordinates with a

statistically significant correlation whose strength is determined by the corresponding correlation

coefficient. These are highlighted in green in Figure 2.

Figure 2: p-values of Spearman rank correlation between all key points.

By examining the overlap between these tables, it can be determined which coordinate

pairs can most effectively be implemented into a machine learning model to form an accurate

run. It is important to note that when a variable is paired against itself (nose_x against nose_x,

nose_y against nose_y, etc.), it will always produce a p-value of 0 and a correlation coefficient of
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1. These pairings are a side effect of matching all of the variables in this way, and they do not

represent any meaningful correlations. The tables are combined in Figure 3, in which a value of 1

represents a coordinate pair with a correlation coefficient of 0.6 or higher and a p-value below

0.05, while a value of 0 represents a coordinate pair that does not meet these conditions, thus

deeming the correlation insignificant.

Figure 3: p-values of Spearman rank correlation between all key points.

To consider the run modelable through machine learning, each coordinate should be

moderately correlated with a minimum of at least one other coordinate through the passage of

time. The machine learning model used in the study was a deep neural network. The form of this
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type of neural network allows it to make predictions based on the learned connections between

variables, as discussed by Cser et al. Keeping in mind the symmetry that exists in the table, it can

be observed that a moderate to strong correlation exists between each single coordinate and at

least one other coordinate. This indicates that despite the unpredictability of humans and their

motion, a consistent top level run can be modeled to a limited extent with a deep neural network.

Limitations

Creating the model utilizing the proposed structure (a deep neural network with 5 hidden

layers of 512 parameters each) uncovers a slew of limitations that are necessary to address in its

evaluation. After evaluating the final model using the model.evaluate() function in the Keras

library, it is revealed that the model predicts the next frame with a loss of 18.125 and an accuracy

of 66.67 percent. This result is within expectation, as the correlation coefficient of at least one

coordinate pair including every tested coordinate was greater than or equal to 0.6, meaning that

the accuracy of an ML model modeling this relationship should optimally have an accuracy that

falls between 0.6 and 1. Although this accuracy is acceptable when making predictions one

frame at a time, attempting to make predictions more than a single frame into the future results in

the inaccuracy compounding, decreasing drastically as the number of frames increases. The

proposed prediction of 15 frames into the future for a reliable model can only be completed with

an accuracy of just 0.228 percent.

Stemming from human unpredictability, this compounding accuracy is the ultimate

limiting factor in allowing the model to predict further than a frame into the future as proposed.

However, a side effect of the way that the model was fitted is its ability to correct the

posture/form of any running pose. Because the data used to fit the model was retrieved from an
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Olympic running event, predicted poses will be aligned with the style of the Olympic runner, a

favorable position for any runner below the Olympic level. This means that rather than trying to

predict 15 frames at once (essentially generating a full corrected stride based on one starting

position), a runner’s position can be corrected on each individual frame, retaining a 66.67 percent

accuracy through the entire run.

This solution is not perfect, however, as discontinuity is introduced as a problem. When

correcting the pose on a certain frame, the model has no context beyond the singular frame that is

inputted. The model cannot see where each point came from, so values such as velocity and

acceleration are not considered individually for each runner. Rather, all inference is based on

values that were observed when the model was first fitted. This, along with the model’s accuracy,

causes the model to correct each frame individually, leading to a complete run that appears to

jitter due to inconsistency when played back (each frame introduces its own inaccuracy unrelated

to other frames). Depending on the use case, correcting a run with continuity may not be

necessary. Finding the least accurate point in the run, for example, can be done without

continuity by calculating the cosine similarity between expected and predicted pose at each

frame. For continuity to be introduced, the model would have to be recreated with an ability to

input contextual poses.

Conclusion and Future Directions

Evaluating the results of the creation of the deep learning model against Wei’s

observations reveals the placement of a deep learning and computer vision approach to running

analysis among modern, widespread sports technologies. The proposed method has a strong

resemblance of the method used by MySwing to aid golfers in golf swing analysis. Both utilize
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pose detection to visually show an athlete what they should change about their form in order to

improve. Using MySwing, “players can observe and analyze their own swings from a

comprehensive perspective and compare them with more skilled professional golfers'' (Wei, et

al., 2021). However, the proposed method benefits from its ability to perform pose detection

without the need for any external hardware beyond a camera, one of MySwing’s greatest

downfalls. This practicality leads to a solution that is easily accessible to anyone with just a

smartphone, increasing the potential widespread adoption. This adoption would allow athletes

without access to coaching due to financial or other constraints to further develop their running

form. Casual runners would benefit from the adoption of this technology as well, as these types

of runners may not invest in coaching. This technology would allow these athletes to better avoid

injuries by helping them correct faulty, possibly dangerous, form. Heightening the performance

potential for all runners has the advantage of making the sport more competitive as more athletes

gain access to the tools they need to reach a high performance level in the sport. A higher level

of competition overall makes the sport more enjoyable for athletes and fans alike.

Two distinct conclusions can be made after analyzing the results of the data collection.

The first conclusion is in regard to the ability of a run to be modeled through deep learning. This

study analyzes one particular Olympic runner’s stride, proving that a correlation strength of 0.6

or higher can be observed between each component of a pose and at least one other component.

This result demonstrates that a run can be modeled with an ideal accuracy greater than 60

percent, which can be seen in the implementation used in this study. Making corrections with this

level of accuracy provides evidence that this technology does have potential widespread appeal

to runners.
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In a study by Paul Fleming, interviews reveal that one of the six primary themes that

runners and coaches expect technology to be able to address is technique. The sub-themes of

technique addressed by deep learning are kinematics and joint position/angle. Thus, the second

conclusion that can be made is that the output of the suggested deep learning approach to the

problem of running does align with the information required by runners and coaches to make

informed decisions about how their running can be improved. However, the conclusion is limited

because the model does not address the multitude of other factors that were brought up in

Fleming’s study. Therefore, a machine learning approach paired with pose estimation is best

suited as a supplement to many of the existing training tools that exist, including wearables as

brought up in Borowski-Beszta and Polasik’s research.

Although the model presented in this research has a limited accuracy and thereby a

limited scope of application, it seeks to set the groundwork for future models to be created that

address more of the aspects of a run. There are various things that should be done in the future to

advance the solution presented in this research and address the apparent limitations. The current

model is limited to a single perspective, a side view in which the runner is stationary within the

frame. This can be expanded up by increasing the size of the dataset and the variety of data

included. The model created in this study is based on the stride of one specific olympic runner, a

feasible method for a run contained within one perspective or simply as a proof of concept.

However, in order to appeal to a wider audience, a dataset must be taken from a set of

professional runners, runs recorded from a variety of angles. Doing this is far more

computationally expensive than was feasible for this study, but would be fitting for a larger

organization or institution to tackle. Furthermore, the limited dataset used prevents the model
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from accurately correcting the posture of runners with significantly different body proportions

from the runner that the model was trained on.

The results of this study set the framework for a new category of technology suited for

supplementing the coaching of runners. The research has significance in the field of running as a

simpler way to apply more complex analysis to a run. The method avoids the use of bulky

sensors that are typically used when analyzing a run, while having a high potential for new

insight. The ease of use of an analytical running technology that is free from the burden of

physical sensors that inhibit motion is the principle behind the deep learning model created in

this research. With future advancements, one can expect the technology to expand in its

capabilities, allowing it to target more of the themes presented by Fleming. Additionally, this

technology isn’t limited to running. Form, specifically involving body position, is an important

aspect in a majority of sports. The process utilized in this research could feasibly be replicated

with almost any sport with very little modification, a further benefit of the simplicity of the

technology in comparison with others and the versatility of neural networks. Beyond this, the

rapid advancement of Large Language Models (text generation models with an understanding of

natural language) means that the running model proposed in this research could be adapted to

give written feedback, including specific details about how to achieve a specific result rather

than just displaying the expected result. This could involve training plans, specific pointers, and

explanations of the theory behind why posture should look a certain way.
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Appendix A

Pose Detection Code

Code utilizing BlazePose to detect a runner’s key points in the Javascript programming language.

import * as poseDetection from "@tensorflow-models/pose-detection";

import "@tensorflow/tfjs-backend-cpu";

import "@tensorflow/tfjs";

import * as mpPose from "@mediapipe/pose";

import { data } from "@tensorflow/tfjs";

let ended = false;

let allposes = [];

// sleep helper function

const sleep = (ms) => {

return new Promise((res) => {

setTimeout(() => {

res(true);

}, ms);

});

};

// main pose detection function

let processor = {

frameNumber: 0,

canStep: true,

hasLoaded: false,

timerCallback: async function () {

let self = this;

if (self.frameNumber > self.videoTotalFrames && !ended) {

ended = true;

let formattedposes = [];

allposes.map((e) => {

let keypointsar = [];

e[0].keypoints.map((p) => {

keypointsar.push(p.x);

keypointsar.push(p.y);

});

formattedposes.push([keypointsar.join(",")]);

});

let csvContent =
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"data:text/csv;charset=utf-8," +

formattedposes.map((e) => e.join(",")).join("\n");

var encodedUri = encodeURI(csvContent);

var link = document.createElement("a");

link.setAttribute("href", encodedUri);

link.setAttribute(

"download",

`${document.getElementById("video").src}.csv`

);

document.body.appendChild(link);

link.click();

return;

}

if (this.canStep) {

console.log(`Frame: ${self.frameNumber}`);

await this.computeFrame();

self.frameNumber++;

setTimeout(function () {

this.video.currentTime = Math.max(0, self.frameNumber / 10);

self.timerCallback();

}, 0);

} else {

setTimeout(function () {

self.timerCallback();

}, 100);

}

},

doLoad: function () {

if (!this.hasLoaded) {

this.hasLoaded = true;

this.video = document.getElementById("video");

this.video.addEventListener("ended", () => {

ended = true;

});

this.videoTotalFrames = Math.max(0, this.video.duration * 10);

this.video.crossOrigin = "anonymous";

this.c1 = document.getElementById("c1");

this.c1.height = this.video.videoHeight / 2;

this.c1.width = this.video.videoWidth / 2;

this.ctx1 = this.c1.getContext("2d");

this.c2 = document.getElementById("c2");

this.c2.height = this.video.videoHeight / 2;

this.c2.width = this.video.videoWidth / 2;

this.ctx2 = this.c2.getContext("2d");

let self = this;
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this.video.currentTime = 0;

this.video.addEventListener(

"play",

function () {

self.video.pause();

self.width = self.video.videoWidth / 2;

self.height = self.video.videoHeight / 2;

self.timerCallback();

},

false

);

}

},

computeFrame: async function () {

this.canStep = false;

await this.ctx1.drawImage(this.video, 0, 0, this.width, this.height);

let frame = this.ctx1.getImageData(0, 0, this.width, this.height);

let image = new Image();

this.ctx1.putImageData(frame, 0, 0);

image.src = this.c1.toDataURL();

const model = poseDetection.SupportedModels.BlazePose;

const detector = await poseDetection.createDetector(model, {

runtime: "tfjs",

});

const poses = await detector.estimatePoses(image);

allposes.push(poses);

// display skeleton for debugging

this.ctx2.putImageData(frame, 0, 0);

this.ctx2.fillStyle = "red";

for (let i = 0; i < 33; i++) {

if ([13, 14].includes(i)) {

continue;

}

let x = poses[0].keypoints[i].x;

let y = poses[0].keypoints[i].y;

this.ctx2.beginPath();

this.ctx2.arc(x, y, 5, 0, 2 * Math.PI);

this.ctx2.fill();

}

this.ctx2.beginPath();

this.ctx2.strokeStyle = "blue";

this.ctx2.lineWidth = 6;

// draw line segments to display
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connectpoints(25, 27, this.ctx2, poses);

connectpoints(23, 25, this.ctx2, poses);

connectpoints(24, 23, this.ctx2, poses);

connectpoints(11, 12, this.ctx2, poses);

connectpoints(24, 26, this.ctx2, poses);

connectpoints(26, 28, this.ctx2, poses);

connectpoints(12, 14, this.ctx2, poses);

connectpoints(14, 16, this.ctx2, poses);

connectpoints(24, 12, this.ctx2, poses);

connectpoints(23, 11, this.ctx2, poses);

this.ctx2.stroke();

this.canStep = true;

return;

},

};

// pose display helper function

const connectpoints = (p1, p2, ctx, poses) => {

ctx.moveTo(poses[0].keypoints[p1].x, poses[0].keypoints[p1].y);

ctx.lineTo(poses[0].keypoints[p2].x, poses[0].keypoints[p2].y);

};

window.onload = () => {

processor.doLoad();

};
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Appendix B

Machine Learning Model Code

Code utilizing Tensorflow to create and train the running model in the Python programming

language.

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import seaborn as sns

import cv2 as cv

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

column_names = ['nosex', 'nosey', 'leix', 'leiy', 'lex', 'ley', 'leox', 'leoy',

'reix', 'reiy', 'rex', 'rey', 'reox', 'reoy', 'left_earx', 'left_eary',

'right_earx', 'right_eary', 'mlx', 'mly', 'mrx', 'mry', 'left_shoulderx',

'left_shouldery', 'right_shoulderx', 'right_shouldery', 'left_elbowx',

'left_elbowy', 'right_elbowx', 'right_elbowy', 'left_wristx', 'left_wristy',

'right_wristx', 'right_wristy', 'lpx', 'lpy', 'rpx', 'rpy', 'lix', 'liy', 'rix',

'riy', 'ltx', 'lty', 'rtx', 'rty', 'left_hipx', 'left_hipy', 'right_hipx',

'right_hipy', 'left_kneex', 'left_kneey', 'right_kneex', 'right_kneey',

'left_anklex', 'left_ankley', 'right_anklex', 'right_ankley', 'lhx', 'lhy', 'rhx',

'rhy', 'lfix', 'lfiy', 'rfix', 'rfiy']

important_column_names = ['nosex', 'nosey', 'left_shoulderx', 'left_shouldery',

'right_shoulderx', 'right_shouldery', 'left_elbowx', 'left_elbowy', 'right_elbowx',

'right_elbowy', 'left_wristx', 'left_wristy', 'right_wristx', 'right_wristy',

'left_hipx', 'left_hipy', 'right_hipx', 'right_hipy', 'left_kneex', 'left_kneey',

'right_kneex', 'right_kneey', 'left_anklex', 'left_ankley', 'right_anklex',

'right_ankley']

raw_dataset = pd.read_csv("./csvs/run.csv", names=column_names,

na_values='?', comment='\t',

sep=',', skipinitialspace=True)

dataset = raw_dataset.copy()

dataset.dropna()

dataset = dataset.drop(columns=['leix', 'leiy', 'lex', 'ley', 'leox', 'leoy',

'reix', 'reiy', 'rex', 'rey', 'reox', 'reoy', 'left_earx', 'left_eary',

'right_earx', 'right_eary', 'mlx', 'mly', 'mrx', 'mry', 'lpx', 'lpy', 'rpx', 'rpy',

'lix', 'liy', 'rix', 'riy', 'ltx', 'lty', 'rtx', 'rty', 'lhx', 'lhy', 'rhx', 'rhy',

'lfix', 'lfiy', 'rfix', 'rfiy'])

train_dataset = dataset.sample(frac=0.8)
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train_dataset = dataset[:25]

test_dataset = dataset.drop(train_dataset.index)

test_dataset = dataset[25:]

train_features = train_dataset.copy().drop([24])

test_features = test_dataset.copy().drop([31])

train_labels = train_dataset.copy().drop(0)

test_labels = test_dataset.copy().drop(25)

normalizer = tf.keras.layers.Normalization(axis=-1)

normalizer.adapt(np.array(train_features))

first = np.array(train_features[:1])

run_model = tf.keras.Sequential([

normalizer,

layers.Dense(units=512, activation='relu'),

layers.Dense(units=512, activation='relu'),

layers.Dense(units=512, activation='relu'),

layers.Dense(units=512, activation='relu'),

layers.Dense(units=512, activation='relu'),

layers.Dense(units=26)

])

run_model.compile(

optimizer=tf.keras.optimizers.legacy.Adam(0.01),

loss='mean_absolute_error', metrics='accuracy')

import datetime

log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,

histogram_freq=1)

# train model

history = run_model.fit(

train_features,

train_labels,

epochs=500,

# Calculate validation results on 40% of the training data.

validation_split = 0.4,

callbacks=[tensorboard_callback])

hist = pd.DataFrame(history.history)

hist['epoch'] = history.epoch

loss, acc = run_model.evaluate(test_features, test_labels)

print("Loss {}, Accuracy {}".format(loss, acc))
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# make predictions

predictindex = 1 # frame to predict

# plot predictions and actual values as bar chart

def plot_error_bar():

for i in range(len(np.array(test_features)[0])):

plt.bar(3*i - 1, np.array(test_features)[0][i], color="blue")

for i in range(len(pose_predictions[0])):

plt.bar(3*i, pose_predictions[0][i], color="red")

plt.ylim(0, 300)

plt.xlabel('pose_component')

plt.ylabel('positions')

plt.legend()

plt.grid(True)

# plot predictions and actual values as line graph

def plot_error_line():

plt.plot(np.array(test_features[predictindex-1:predictindex])[0],

label='correct')

plt.plot(pose_predictions[0], label='guess')

plt.ylim(0, 300)

plt.xlabel('pose_component')

plt.ylabel('positions')

plt.legend()

plt.grid(True)

plot_error_bar()

plot_error_line()


